
Ruby-us Hagrid
Writing Harry Potter with Ruby

@alexpeattiealexpeattie.com/hp

http://alexpeattie.com/hp

Why should we do it?

What can we achieve?

How can we do it?

Writing Harry Potter with Ruby

Why should we do it?

Category A
The “Potheads”

Category B
The “Notters”

“Ouch, my heart” “Is that Yoda?”

What can we achieve?

(Spoiler!)

Neville, Seamus and Dean were muttering but did

not speak when Harry had told Fudge mere weeks

ago that Malfoy was crying, actually crying tears,

streaming down the sides of their heads. “They

revealed a spell to make your bludger” said Harry,

anger rising once more.

How can we do it?

“They revealed a spell to make your bludger” said

Harry, anger rising once more.

Key idea 1: Tell the story word by word

Key idea 2: Let’s take inspiration from our phones

https://alexpeattie.com/assets/images/talks/hp/predictive.mp4

https://alexpeattie.com/assets/images/talks/hp/predictive.mp4

After “birthday”, I’ve used the word:

- “party” 30 times

- “cake” 20 times

- “wishes” 10 times

After “golden”, J.K. used the word:

- “egg” 13 times

- “snitch” 11 times

- “plates” 10 times

The world “golden” appears in the Harry

Potter books 226 times.

After “golden”, J.K. used the word:

- “egg” 13 times

- “snitch” 11 times

- “plates” 10 times

The world “golden” appears in the Harry

Potter books 226 times.
Head

Continuations

Step 1

Learn

Step 2

Generate

Key idea 3

golden egg

snitch

plates

light

 ⋮
liquid

13

11

10

9

1

goldfish out

any

bowls

above

1

1

1

1

golf balls 2

 ⋮

21,814 words

 ⋮

{
 :golden => {
 :egg => 13,
 :snitch => 11,
 :plates => 10,
 :light => 9,
 :liquid => 1
 },

 :goldfish => {
 :out => 1,
 :any => 1,
 :of => 1,
 :bowls => 1
 },
 :golf => {
 :balls => 2
 }
}

alexpeattie.com/hp

http://alexpeattie.com/hp

def tokenize(text)
 text.downcase.split(/[^a-z]+/).reject(&:empty?).map(&:to_sym)
end

"Mr. and Mrs. Dursley, of number four, Privet Drive,
were proud to say that they were perfectly normal"

[:mr, :and, :mrs, :dursley, :of, :number, :four, :privet, :drive,
:were, :proud, :to, :say, :that, :they, :were, :perfectly, :normal]

text = tokenize "The cat sat on the mat.
The cat was happy."

stats = {}

text.each_cons(2) do |head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

text = tokenize "The cat sat on the mat.
The cat was happy."

stats = {}

text.each_cons(2) do |head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

[:the, :cat]

head continuation

{
 :the => {
 :cat => 1
 }
}

text = tokenize "The cat sat on the mat.
The cat was happy."

stats = {}

text.each_cons(2) do |head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

[:cat, :sat]

head continuation

{
 :the => {
 :cat => 1
 },
 :cat => {
 :sat => 1
 }
}

text = tokenize "The cat sat on the mat.
The cat was happy."

stats = {}

text.each_cons(2) do |head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

{
 :the => {
 :cat => 2,
 :mat => 1
 },
 :cat => {
 :sat => 1,
 :was => 1
 },
 :sat => {
 :on => 1
 },
 :on => {
 :the => 1
 },
 :mat => {
 :the => 1
 },
 :was => {
 :happy => 1
 }
}

Step 1

Learn ✅

Step 2

Generate

Greedy algorithm

Pick most
frequent
continuation

Pick most
frequent
continuation

def pick_next_word_greedily(head)
 continuations = stats[head]
 chosen_word, count = continuations.max_by { |word, count| count }

 return chosen_word
end

story = [stats.keys.sample] # start with a random word from corpus

1.upto(50) do # 50 word story
 story << pick_next_word_greedily(story.last)
end
puts story.join(" ")

Drumroll….

“Oh no” said Harry. A few seconds later they

were all the door and the door and the door

and the door and the door.

Take two….

Surreptitiously, several of the door and the

door and the door and the door and the door

and the door and the door.

several
of

the

door
and

conference enchantingly nasty little more

than ever since he was a few seconds later

they were all the door and…

conference

Greedy algorithm

Let’s get random

Uniform random algorithm

Pick randomly w/ equal probability

Pick randomly w/ equal probability

⅓
⅓ ⅓

Pick randomly w/ equal probability

egg

snitch

plates

light

 ⋮

liquid

1/117

1/117

1/117

1/117

1/117

112 more

def pick_random_next_word(head)
 continuations = stats[head]
 return continuations.keys.sample
end

Debris from boys or accompany him bodily

from Ron, yell the waters. Harry laughing

together soon father would then bleated the

smelly cloud.

What’s the problem?

house elf
102 times

~1/200
chance

prices
1 time

~1/200
chance

Let’s get (a bit less) random

Weighted random algorithm

house elf
102 times

prices
1 time

~1/200
chance

~1/200
chance

734 times

house elf
102 times

prices
1 time

~1/7
chance

~1/700
chance

734 times

Pick randomly w/ weighted probabilities

½
⅓ ⅙

def pick_next_word_weighted_randomly(head)
 continuations = stats[head]
 continuations.flat_map { |word, count| [word] * count }.sample
end

Springing forward as though they had a bite of the

hippogriff, he staggered blindly retorting Harry

some pumpkin tart.

One last big idea…

Key idea 4: Improve output by looking at more

than just 1 previous word

{
 :golden => {
 :egg => 12,
 :snitch => 11,
 :plates => 10,
 :light => 9,
 :liquid => 1
 },

 :goldfish => {
 :out => 1,
 :any => 1,
 :of => 1,
 :bowls => 1
 },
 :golf => {
 :balls => 2
 }
}

Two words

bi·gram
two word

{
 [:golden, :egg] => {
 :harry => 1,
 :very => 1,
 :and => 2,
 :which => 1,
 :upstairs => 1,
 :does => 1,
 :he => 2,
 :said => 1,
 :still => 1,
 :fell => 1
 },

 [:golden, :snitch] => {
 :and => 1,
 :had => 1,
 :said => 1,
 :it => 1,
 :a => 1,
 :with => 1,
 :was => 1,
 :where => 1,
 :worked => 1
 }
}

321,727 entriestri·gram
three word

Three words

stats = {} 
n = 3

corpus.each_cons(n) do |*head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

Added splat

[[:the, :cat], :sat]

head continuation

{
 [:the, :cat] => {
 :sat => 1
 }
}

stats = {} 
n = 3

corpus.each_cons(n) do |*head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

Normally when Dudley found his voice barely

louder than before. “Dementors” said Dumbledore

steadily, he however found all this mess is utterly

worthless. Harry looked at him, put Slughorn into

his bag more securely on to bigger and bigger until

their blackness swallowed Harry whole and started

emptying his drawers.
— trigram model

Neville, Seamus and Dean were muttering but did

not speak when Harry had told Fudge mere weeks

ago that Malfoy was crying, actually crying tears,

streaming down the sides of their heads. “They

revealed a spell to make your bludger” said Harry,

anger rising once more.

— 4-gram model

def tokenize(sentence)
 sentence.downcase.split(/[^a-z]+/).reject(&:empty?).map(&:to_sym)
end

def pick_next_word_weighted_randomly(head, stats)
 continuations = stats[head]
 continuations.flat_map { |word, count | [word] * count }.sample
end

text = tokenize(IO.read('hp.txt'))
stats = {}

n = 3
text.each_cons(n) do |*head, continuation|
 stats[head] ||= Hash.new(0)

 stats[head][continuation] += 1
end

story = stats.keys.sample

1.upto(50) do
 story << pick_next_word_weighted_randomly(story.last(n - 1), stats)
end
puts story.join(" ")

20 lines

Key idea 1: Tell the story word by word

Key idea 2: Let’s take inspiration from our phones

Key idea 3: Learn (stats about words and continuations), and
generate (with weighted random algorithm)

Key idea 4: Improve output by looking at more
than just 1 previous word

alexpeattie.com/hp

http://alexpeattie.com/hp

